Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Find the derivative using the definition
- Find the derivative using the product rule
- Find the derivative using the quotient rule
- Find the derivative using logarithmic differentiation
- Find the derivative
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Integrate by substitution
- Load more...
Simplify the derivative by applying the properties of logarithms
Learn how to solve quotient rule of differentiation problems step by step online.
$\frac{d}{dx}\left(\frac{x^{\left(9+x\right)}\sec\left(x\right)}{\cos\left(x\right)}\right)$
Learn how to solve quotient rule of differentiation problems step by step online. Find the derivative of x^x(x^9tan(x))/(cos(x)sin(x)). Simplify the derivative by applying the properties of logarithms. Apply the quotient rule for differentiation, which states that if f(x) and g(x) are functions and h(x) is the function defined by {\displaystyle h(x) = \frac{f(x)}{g(x)}}, where {g(x) \neq 0}, then {\displaystyle h'(x) = \frac{f'(x) \cdot g(x) - g'(x) \cdot f(x)}{g(x)^2}}. Apply the product rule for differentiation: (f\cdot g)'=f'\cdot g+f\cdot g', where f=x^{\left(9+x\right)} and g=\sec\left(x\right). The derivative of the cosine of a function is equal to minus the sine of the function times the derivative of the function, in other words, if f(x) = \cos(x), then f'(x) = -\sin(x)\cdot D_x(x).