Final answer to the problem
$e\left(\frac{ebgi\frac{\frac{\frac{nar^2ay}{l}}{\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } {\left(-1\right)}^n}}{\ln\left(n\right)}\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } -1^nx^n}{n7^n}\right)nr^2ay\cdot da$
Got another answer? Verify it here!
Step-by-step Solution
1
When multiplying two powers that have the same base ($r$), you can add the exponents
$e\left(\frac{ebgi\frac{\frac{\frac{nar\cdot ray}{l}}{\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } {\left(-1\right)}^n}}{\ln\left(n\right)}\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } -1^nx^n}{n7^n}\right)nr^2ay\cdot da$
2
When multiplying two powers that have the same base ($r$), you can add the exponents
$e\left(\frac{ebgi\frac{\frac{\frac{nar^2ay}{l}}{\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } {\left(-1\right)}^n}}{\ln\left(n\right)}\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } -1^nx^n}{n7^n}\right)nr^2ay\cdot da$
Final answer to the problem
$e\left(\frac{ebgi\frac{\frac{\frac{nar^2ay}{l}}{\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } {\left(-1\right)}^n}}{\ln\left(n\right)}\sum_{n=0}^{\infty }_{\infty }^{n=0}_{n=2}^{\infty } -1^nx^n}{n7^n}\right)nr^2ay\cdot da$