Find the integral $\int\frac{x^2}{\sqrt{x^2+6}}dx$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$-3\ln\left|\sqrt{x^2+6}+x\right|+\frac{1}{2}x\sqrt{x^2+6}+C_1$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Choose an option
  • Integrate by partial fractions
  • Integrate by substitution
  • Integrate by parts
  • Integrate using tabular integration
  • Integrate by trigonometric substitution
  • Weierstrass Substitution
  • Integrate using trigonometric identities
  • Integrate using basic integrals
  • Product of Binomials with Common Term
  • Load more...
Can't find a method? Tell us so we can add it.
1

We can solve the integral $\int\frac{x^2}{\sqrt{x^2+6}}dx$ by applying integration method of trigonometric substitution using the substitution

$x=\sqrt{6}\tan\left(\theta \right)$

Differentiate both sides of the equation $x=\sqrt{6}\tan\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(\sqrt{6}\tan\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(\sqrt{6}\tan\left(\theta \right)\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$\sqrt{6}\frac{d}{d\theta}\left(\tan\left(\theta \right)\right)$

The derivative of the tangent of a function is equal to secant squared of that function times the derivative of that function, in other words, if ${f(x) = tan(x)}$, then ${f'(x) = sec^2(x)\cdot D_x(x)}$

$\sqrt{6}\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)^2$

The derivative of the linear function is equal to $1$

$\sqrt{6}\sec\left(\theta \right)^2$
2

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=\sqrt{6}\sec\left(\theta \right)^2d\theta$

The power of a product is equal to the product of it's factors raised to the same power

$\int\sqrt{6}\frac{6\tan\left(\theta \right)^2}{\sqrt{\left(\sqrt{6}\tan\left(\theta \right)\right)^2+6}}\sec\left(\theta \right)^2d\theta$

Multiplying the fraction by $\sqrt{6}\sec\left(\theta \right)^2$

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{\left(\sqrt{6}\tan\left(\theta \right)\right)^2+6}}d\theta$

The power of a product is equal to the product of it's factors raised to the same power

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\tan\left(\theta \right)^2+6}}d\theta$

Simplify $6\tan\left(\theta \right)^2+6$ into secant function

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6\sec\left(\theta \right)^2}}d\theta$

The power of a product is equal to the product of it's factors raised to the same power

$\int\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}d\theta$

Simplify the fraction $\frac{6\sqrt{6}\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sqrt{6}\sec\left(\theta \right)}$ by $\sqrt{6}$

$\int\frac{6\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sec\left(\theta \right)}d\theta$
3

Substituting in the original integral, we get

$\int\frac{6\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sec\left(\theta \right)}d\theta$

Simplify the fraction $\frac{6\tan\left(\theta \right)^2\sec\left(\theta \right)^2}{\sec\left(\theta \right)}$ by $\sec\left(\theta \right)$

$\int6\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$
4

Simplifying

$\int6\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$
5

The integral of a function times a constant ($6$) is equal to the constant times the integral of the function

$6\int\tan\left(\theta \right)^2\sec\left(\theta \right)d\theta$

Applying the trigonometric identity: $\tan\left(\theta \right)^2 = \sec\left(\theta \right)^2-1$

$6\int\left(\sec\left(\theta \right)^2-1\right)\sec\left(\theta \right)d\theta$
6

We identify that the integral has the form $\int\tan^m(x)\sec^n(x)dx$. If $n$ is odd and $m$ is even, then we need to express everything in terms of secant, expand and integrate each function separately

$6\int\left(\sec\left(\theta \right)^2-1\right)\sec\left(\theta \right)d\theta$

Multiply the single term $\sec\left(\theta \right)$ by each term of the polynomial $\left(\sec\left(\theta \right)^2-1\right)$

$\int\left(\sec\left(\theta \right)^2\sec\left(\theta \right)-\sec\left(\theta \right)\right)$

When multiplying exponents with same base you can add the exponents: $\sec\left(\theta \right)^2\sec\left(\theta \right)$

$6\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$
7

Multiply the single term $\sec\left(\theta \right)$ by each term of the polynomial $\left(\sec\left(\theta \right)^2-1\right)$

$6\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$
8

Expand the integral $\int\left(\sec\left(\theta \right)^{3}-\sec\left(\theta \right)\right)d\theta$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$6\int\sec\left(\theta \right)^{3}d\theta-6\int\sec\left(\theta \right)d\theta$

Simplify the integral $\int\sec\left(\theta \right)^{3}d\theta$ applying the reduction formula, $\displaystyle\int\sec(x)^{n}dx=\frac{\sin(x)\sec(x)^{n-1}}{n-1}+\frac{n-2}{n-1}\int\sec(x)^{n-2}dx$

$6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)$

Solve the product $6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}+\frac{1}{2}\int\sec\left(\theta \right)d\theta\right)$

$6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)+3\int\sec\left(\theta \right)d\theta$

Simplify the fraction $6\left(\frac{\sin\left(\theta \right)\sec\left(\theta \right)^{2}}{2}\right)$

$3\sin\left(\theta \right)\sec\left(\theta \right)^{2}+3\int\sec\left(\theta \right)d\theta$

Express the variable $\theta$ in terms of the original variable $x$

$\frac{1}{2}x\sqrt{x^2+6}+3\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$\frac{1}{2}x\sqrt{x^2+6}+3\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|$

Express the variable $\theta$ in terms of the original variable $x$

$\frac{1}{2}x\sqrt{x^2+6}+3\ln\left|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right|$
9

The integral $6\int\sec\left(\theta \right)^{3}d\theta$ results in: $\frac{1}{2}x\sqrt{x^2+6}+3\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)$

$\frac{1}{2}x\sqrt{x^2+6}+3\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)$
10

Gather the results of all integrals

$3\ln\left|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right|+\frac{1}{2}x\sqrt{x^2+6}-6\int\sec\left(\theta \right)d\theta$

The integral of the secant function is given by the following formula, $\displaystyle\int\sec(x)dx=\ln\left|\sec(x)+\tan(x)\right|$

$-6\ln\left|\sec\left(\theta \right)+\tan\left(\theta \right)\right|$

Express the variable $\theta$ in terms of the original variable $x$

$-6\ln\left|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right|$
11

The integral $-6\int\sec\left(\theta \right)d\theta$ results in: $-6\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)$

$-6\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)$
12

Gather the results of all integrals

$3\ln\left|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right|+\frac{1}{2}x\sqrt{x^2+6}-6\ln\left|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right|$
13

Combining like terms $3\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)$ and $-6\ln\left(\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right)$

$-3\ln\left|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right|+\frac{1}{2}x\sqrt{x^2+6}$
14

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$-3\ln\left|\frac{\sqrt{x^2+6}+x}{\sqrt{6}}\right|+\frac{1}{2}x\sqrt{x^2+6}+C_0$
15

Simplify the expression by applying the property of the logarithm of a quotient

$-3\ln\left|\sqrt{x^2+6}+x\right|+\frac{1}{2}x\sqrt{x^2+6}+C_1$

Final answer to the problem

$-3\ln\left|\sqrt{x^2+6}+x\right|+\frac{1}{2}x\sqrt{x^2+6}+C_1$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $-3\ln\left(\sqrt{x^2+6}+x\right)+\frac{1}{2}x\sqrt{x^2+6}+C_1$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Your Personal Math Tutor. Powered by AI

Available 24/7, 365 days a year.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download solutions in PDF format and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account