Solve the trigonometric integral $\int\mathrm{coth}\left(3x\right)dx$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\frac{1}{3}\ln\left|\mathrm{sinh}\left(3x\right)\right|+C_0$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Choose an option
  • Integrate by partial fractions
  • Integrate by substitution
  • Integrate by parts
  • Integrate using tabular integration
  • Integrate by trigonometric substitution
  • Weierstrass Substitution
  • Integrate using trigonometric identities
  • Integrate using basic integrals
  • Product of Binomials with Common Term
  • Load more...
Can't find a method? Tell us so we can add it.
1

We can solve the integral $\int\mathrm{coth}\left(3x\right)dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $3x$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=3x$

Differentiate both sides of the equation $u=3x$

$du=\frac{d}{dx}\left(3x\right)$

Find the derivative

$\frac{d}{dx}\left(3x\right)$

The derivative of the linear function times a constant, is equal to the constant

$3\frac{d}{dx}\left(x\right)$

The derivative of the linear function is equal to $1$

$3$
2

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=3dx$

Rearrange the equation

$3dx=du$

Divide both sides of the equation by $3$

$dx=\frac{du}{3}$
3

Isolate $dx$ in the previous equation

$dx=\frac{du}{3}$
4

Substituting $u$ and $dx$ in the integral and simplify

$\int\frac{\mathrm{coth}\left(u\right)}{3}du$
5

Take the constant $\frac{1}{3}$ out of the integral

$\frac{1}{3}\int\mathrm{coth}\left(u\right)du$
6

We can solve the integral $\int\mathrm{coth}\left(u\right)du$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

Taking the derivative of hyperbolic cotangent

$-\mathrm{csch}\left(u\right)^2\frac{d}{du}\left(u\right)$

The derivative of the linear function is equal to $1$

$-\mathrm{csch}\left(u\right)^2$
7

First, identify or choose $u$ and calculate it's derivative, $du$

$\begin{matrix}\displaystyle{u=\mathrm{coth}\left(u\right)}\\ \displaystyle{du=-\mathrm{csch}\left(u\right)^2du}\end{matrix}$
8

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=1du}\\ \displaystyle{\int dv=\int 1du}\end{matrix}$
9

Solve the integral to find $v$

$v=\int1du$
10

The integral of a constant is equal to the constant times the integral's variable

$u$

The integral of a function times a constant ($-1$) is equal to the constant times the integral of the function

$\frac{1}{3}\left(u\mathrm{coth}\left(u\right)+1\int u\mathrm{csch}\left(u\right)^2du\right)$

Any expression multiplied by $1$ is equal to itself

$\frac{1}{3}\left(u\mathrm{coth}\left(u\right)+\int u\mathrm{csch}\left(u\right)^2du\right)$
11

Now replace the values of $u$, $du$ and $v$ in the last formula

$\frac{1}{3}\left(u\mathrm{coth}\left(u\right)+\int u\mathrm{csch}\left(u\right)^2du\right)$
12

Multiply the single term $\frac{1}{3}$ by each term of the polynomial $\left(u\mathrm{coth}\left(u\right)+\int u\mathrm{csch}\left(u\right)^2du\right)$

$\frac{1}{3}u\mathrm{coth}\left(u\right)+\frac{1}{3}\int u\mathrm{csch}\left(u\right)^2du$

Replace $u$ with the value that we assigned to it in the beginning: $3x$

$3\cdot \frac{1}{3}x\mathrm{coth}\left(u\right)+\frac{1}{3}\int u\mathrm{csch}\left(u\right)^2du$
13

Replace $u$ with the value that we assigned to it in the beginning: $3x$

$3\cdot \frac{1}{3}x\mathrm{coth}\left(u\right)+\frac{1}{3}\int u\mathrm{csch}\left(u\right)^2du$
14

Multiply the fraction and term in $3\cdot \frac{1}{3}x\mathrm{coth}\left(u\right)$

$x\mathrm{coth}\left(u\right)+\frac{1}{3}\int u\mathrm{csch}\left(u\right)^2du$

Replace $u$ with the value that we assigned to it in the beginning: $3x$

$x\mathrm{coth}\left(3x\right)+\frac{1}{3}\int u\mathrm{csch}\left(u\right)^2du$
15

Replace $u$ with the value that we assigned to it in the beginning: $3x$

$x\mathrm{coth}\left(3x\right)+\frac{1}{3}\int u\mathrm{csch}\left(u\right)^2du$

We can solve the integral $\int u\mathrm{csch}\left(u\right)^2du$ by applying integration by parts method to calculate the integral of the product of two functions, using the following formula

$\displaystyle\int u\cdot dv=u\cdot v-\int v \cdot du$

First, identify or choose $u$ and calculate it's derivative, $du$

$\begin{matrix}\displaystyle{u=u}\\ \displaystyle{du=du}\end{matrix}$

Now, identify $dv$ and calculate $v$

$\begin{matrix}\displaystyle{dv=\mathrm{csch}\left(u\right)^2du}\\ \displaystyle{\int dv=\int \mathrm{csch}\left(u\right)^2du}\end{matrix}$

Solve the integral to find $v$

$v=\int\mathrm{csch}\left(u\right)^2du$

Apply the formula: $\int\mathrm{csch}\left(\theta \right)^2dx$$=-\mathrm{coth}\left(\theta \right)+C$, where $x=u$

$-\mathrm{coth}\left(u\right)$

Now replace the values of $u$, $du$ and $v$ in the last formula

$\frac{1}{3}\left(-u\mathrm{coth}\left(u\right)+\int\mathrm{coth}\left(u\right)du\right)$

Multiply the single term $\frac{1}{3}$ by each term of the polynomial $\left(-u\mathrm{coth}\left(u\right)+\int\mathrm{coth}\left(u\right)du\right)$

$-\frac{1}{3}u\mathrm{coth}\left(u\right)+\frac{1}{3}\int\mathrm{coth}\left(u\right)du$

Replace $u$ with the value that we assigned to it in the beginning: $3x$

$3-\frac{1}{3}x\mathrm{coth}\left(3x\right)+\frac{1}{3}\int\mathrm{coth}\left(u\right)du$

Multiply the fraction and term in $3-\frac{1}{3}x\mathrm{coth}\left(3x\right)$

$-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\int\mathrm{coth}\left(u\right)du$

Apply the trigonometric identity: $\mathrm{coth}\left(\theta \right)$$=\frac{\mathrm{cosh}\left(\theta \right)}{\mathrm{sinh}\left(\theta \right)}$, where $x=u$

$-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\int\frac{\mathrm{cosh}\left(u\right)}{\mathrm{sinh}\left(u\right)}du$

We can solve the integral $\int\frac{\mathrm{cosh}\left(u\right)}{\mathrm{sinh}\left(u\right)}du$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $v$), which when substituted makes the integral easier. We see that $\mathrm{sinh}\left(u\right)$ it's a good candidate for substitution. Let's define a variable $v$ and assign it to the choosen part

$v=\mathrm{sinh}\left(u\right)$

Now, in order to rewrite $du$ in terms of $dv$, we need to find the derivative of $v$. We need to calculate $dv$, we can do that by deriving the equation above

$dv=\mathrm{cosh}\left(u\right)du$

Isolate $du$ in the previous equation

$\frac{dv}{\mathrm{cosh}\left(u\right)}=du$

Substituting $v$ and $du$ in the integral and simplify

$-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\int\frac{1}{v}dv$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\ln\left|v\right|$

Replace $v$ with the value that we assigned to it in the beginning: $\mathrm{sinh}\left(u\right)$

$-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\ln\left|\mathrm{sinh}\left(u\right)\right|$

Replace $u$ with the value that we assigned to it in the beginning: $3x$

$-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\ln\left|\mathrm{sinh}\left(3x\right)\right|$
16

The integral $\frac{1}{3}\int u\mathrm{csch}\left(u\right)^2du$ results in: $-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\ln\left(\mathrm{sinh}\left(3x\right)\right)$

$-x\mathrm{coth}\left(3x\right)+\frac{1}{3}\ln\left(\mathrm{sinh}\left(3x\right)\right)$
17

Gather the results of all integrals

$x\mathrm{coth}\left(3x\right)+\frac{1}{3}\ln\left|\mathrm{sinh}\left(3x\right)\right|-x\mathrm{coth}\left(3x\right)$
18

Cancel like terms $x\mathrm{coth}\left(3x\right)$ and $-x\mathrm{coth}\left(3x\right)$

$\frac{1}{3}\ln\left|\mathrm{sinh}\left(3x\right)\right|$
19

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{3}\ln\left|\mathrm{sinh}\left(3x\right)\right|+C_0$

Final answer to the problem

$\frac{1}{3}\ln\left|\mathrm{sinh}\left(3x\right)\right|+C_0$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\frac{1}{3}\ln\left(\mathrm{sinh}\left(3x\right)\right)+C_0$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Trigonometric Integrals

Integrals that contain trigonometric functions and their powers.

Used Formulas

See formulas (5)

Your Personal Math Tutor. Powered by AI

Available 24/7, 365.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download complete solutions and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account