👉 Try now NerdPal! Our new math app on iOS and Android

Find the integral $\int\frac{2x^3+9x^2+14x+8}{x\left(x+2\right)\left(x^2+2\right)}dx$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$2\ln\left|x\right|+5\cdot \left(\frac{1}{\sqrt{2}}\right)\arctan\left(\frac{x}{\sqrt{2}}\right)+C_0$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Choose an option
  • Integrate by partial fractions
  • Integrate by substitution
  • Integrate by parts
  • Integrate using tabular integration
  • Integrate by trigonometric substitution
  • Weierstrass Substitution
  • Integrate using trigonometric identities
  • Integrate using basic integrals
  • Product of Binomials with Common Term
  • Load more...
Can't find a method? Tell us so we can add it.
1

We can factor the polynomial $2x^3+9x^2+14x+8$ using the rational root theorem, which guarantees that for a polynomial of the form $a_nx^n+a_{n-1}x^{n-1}+\dots+a_0$ there is a rational root of the form $\pm\frac{p}{q}$, where $p$ belongs to the divisors of the constant term $a_0$, and $q$ belongs to the divisors of the leading coefficient $a_n$. List all divisors $p$ of the constant term $a_0$, which equals $8$

$1, 2, 4, 8$

Learn how to solve integrals by partial fraction expansion problems step by step online.

$1, 2, 4, 8$

Unlock unlimited step-by-step solutions and much more!

Create a free account and unlock a glimpse of this solution.

Learn how to solve integrals by partial fraction expansion problems step by step online. Find the integral int((2x^3+9x^214x+8)/(x(x+2)(x^2+2)))dx. We can factor the polynomial 2x^3+9x^2+14x+8 using the rational root theorem, which guarantees that for a polynomial of the form a_nx^n+a_{n-1}x^{n-1}+\dots+a_0 there is a rational root of the form \pm\frac{p}{q}, where p belongs to the divisors of the constant term a_0, and q belongs to the divisors of the leading coefficient a_n. List all divisors p of the constant term a_0, which equals 8. Next, list all divisors of the leading coefficient a_n, which equals 2. The possible roots \pm\frac{p}{q} of the polynomial 2x^3+9x^2+14x+8 will then be. Trying all possible roots, we found that -2 is a root of the polynomial. When we evaluate it in the polynomial, it gives us 0 as a result.

Final answer to the problem

$2\ln\left|x\right|+5\cdot \left(\frac{1}{\sqrt{2}}\right)\arctan\left(\frac{x}{\sqrt{2}}\right)+C_0$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $2\ln\left(x\right)+5\cdot \left(\frac{1}{\sqrt{2}}\right)\arctan\left(\frac{x}{\sqrt{2}}\right)+C_0$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Integrals by Partial Fraction Expansion

The partial fraction decomposition or partial fraction expansion of a rational function is the operation that consists in expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.

Used Formulas

See formulas (2)

Invest in your Education!

Help us make you learn faster

Complete step-by-step math solutions. No ads.

Download solutions and keep them forever.

Learn math easier and in less time.

Includes multiple solving methods.

Support for more than 100 math topics.

Premium access on our iOS and Android apps.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account