Find the limit of $\frac{1-\cos\left(x\right)}{x^2}$ as $x$ approaches 0

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\frac{1}{2}$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Choose an option
  • Solve using L'Hôpital's rule
  • Solve without using l'Hôpital
  • Solve using limit properties
  • Solve using direct substitution
  • Solve the limit using factorization
  • Solve the limit using rationalization
  • Integrate by partial fractions
  • Product of Binomials with Common Term
  • FOIL Method
  • Load more...
Can't find a method? Tell us so we can add it.

Plug in the value $0$ into the limit

$\lim_{x\to0}\left(\frac{1-\cos\left(0\right)}{0^2}\right)$

The cosine of $0$ equals $1$

$\lim_{x\to0}\left(\frac{1- 1}{0^2}\right)$

Multiply $-1$ times $1$

$\lim_{x\to0}\left(\frac{1-1}{0^2}\right)$

Subtract the values $1$ and $-1$

$\lim_{x\to0}\left(\frac{0}{0^2}\right)$

Calculate the power $0^2$

$\lim_{x\to0}\left(\frac{0}{0}\right)$
1

If we directly evaluate the limit $\lim_{x\to0}\left(\frac{1-\cos\left(x\right)}{x^2}\right)$ as $x$ tends to $0$, we can see that it gives us an indeterminate form

$\frac{0}{0}$
2

We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately

$\lim_{x\to 0}\left(\frac{\frac{d}{dx}\left(1-\cos\left(x\right)\right)}{\frac{d}{dx}\left(x^2\right)}\right)$

Find the derivative of the numerator

$\frac{d}{dx}\left(1-\cos\left(x\right)\right)$

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{d}{dx}\left(-\cos\left(x\right)\right)$

The derivative of a function multiplied by a constant is equal to the constant times the derivative of the function

$-\frac{d}{dx}\left(\cos\left(x\right)\right)$

The derivative of the cosine of a function is equal to minus the sine of the function times the derivative of the function, in other words, if $f(x) = \cos(x)$, then $f'(x) = -\sin(x)\cdot D_x(x)$

$1\sin\left(x\right)$

Any expression multiplied by $1$ is equal to itself

$\sin\left(x\right)$

Find the derivative of the denominator

$\frac{d}{dx}\left(x^2\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$2x$
3

After deriving both the numerator and denominator, and simplifying, the limit results in

$\lim_{x\to0}\left(\frac{\sin\left(x\right)}{2x}\right)$

Plug in the value $0$ into the limit

$\lim_{x\to0}\left(\frac{\sin\left(0\right)}{2\cdot 0}\right)$

The sine of $0$ equals $0$

$\lim_{x\to0}\left(\frac{0}{2\cdot 0}\right)$

Multiply $2$ times $0$

$\lim_{x\to0}\left(\frac{0}{0}\right)$
4

If we directly evaluate the limit $\lim_{x\to0}\left(\frac{\sin\left(x\right)}{2x}\right)$ as $x$ tends to $0$, we can see that it gives us an indeterminate form

$\frac{0}{0}$
5

We can solve this limit by applying L'Hôpital's rule, which consists of calculating the derivative of both the numerator and the denominator separately

$\lim_{x\to 0}\left(\frac{\frac{d}{dx}\left(\sin\left(x\right)\right)}{\frac{d}{dx}\left(2x\right)}\right)$

Find the derivative of the numerator

$\frac{d}{dx}\left(\sin\left(x\right)\right)$

The derivative of the sine of a function is equal to the cosine of that function times the derivative of that function, in other words, if ${f(x) = \sin(x)}$, then ${f'(x) = \cos(x)\cdot D_x(x)}$

$\cos\left(x\right)$

Find the derivative of the denominator

$\frac{d}{dx}\left(2x\right)$

The derivative of the linear function times a constant, is equal to the constant

$2\frac{d}{dx}\left(x\right)$

The derivative of the linear function is equal to $1$

$2$
6

After deriving both the numerator and denominator, and simplifying, the limit results in

$\lim_{x\to0}\left(\frac{\cos\left(x\right)}{2}\right)$
7

Evaluate the limit $\lim_{x\to0}\left(\frac{\cos\left(x\right)}{2}\right)$ by replacing all occurrences of $x$ by $0$

$\frac{\cos\left(0\right)}{2}$
8

The cosine of $0$ equals $1$

$\frac{1}{2}$

Final answer to the problem

$\frac{1}{2}$

Exact Numeric Answer

$0.5$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\frac{1-\cos\left(x\right)}{x^2}$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Limits by L'Hôpital's rule

In mathematics, and more specifically in calculus, L'Hôpital's rule uses derivatives to help evaluate limits involving indeterminate forms.

Used Formulas

See formulas (7)

Your Personal Math Tutor. Powered by AI

Available 24/7, 365.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download complete solutions and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account