Find the integral $\int\frac{x}{x^2-1}dx$

Step-by-step Solution

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

Final answer to the problem

$\frac{1}{2}\ln\left|x^2-1\right|+C_0$
Got another answer? Verify it here!

Step-by-step Solution

How should I solve this problem?

  • Integrate by trigonometric substitution
  • Integrate by partial fractions
  • Integrate by substitution
  • Integrate by parts
  • Integrate using tabular integration
  • Weierstrass Substitution
  • Integrate using trigonometric identities
  • Integrate using basic integrals
  • Product of Binomials with Common Term
  • FOIL Method
  • Load more...
Can't find a method? Tell us so we can add it.
1

We can solve the integral $\int\frac{x}{x^2-1}dx$ by applying integration method of trigonometric substitution using the substitution

$x=\sec\left(\theta \right)$

Differentiate both sides of the equation $x=\sec\left(\theta \right)$

$dx=\frac{d}{d\theta}\left(\sec\left(\theta \right)\right)$

Find the derivative

$\frac{d}{d\theta}\left(\sec\left(\theta \right)\right)$

Taking the derivative of secant function: $\frac{d}{dx}\left(\sec(x)\right)=\sec(x)\cdot\tan(x)\cdot D_x(x)$

$\frac{d}{d\theta}\left(\theta \right)\sec\left(\theta \right)\tan\left(\theta \right)$

The derivative of the linear function is equal to $1$

$\sec\left(\theta \right)\tan\left(\theta \right)$
2

Now, in order to rewrite $d\theta$ in terms of $dx$, we need to find the derivative of $x$. We need to calculate $dx$, we can do that by deriving the equation above

$dx=\sec\left(\theta \right)\tan\left(\theta \right)d\theta$

Multiplying the fraction by $\sec\left(\theta \right)\tan\left(\theta \right)$

$\int\frac{\sec\left(\theta \right)^2\tan\left(\theta \right)}{\sec\left(\theta \right)^2-1}d\theta$
3

Substituting in the original integral, we get

$\int\frac{\sec\left(\theta \right)^2\tan\left(\theta \right)}{\sec\left(\theta \right)^2-1}d\theta$
4

Apply the trigonometric identity: $\sec\left(\theta \right)^2-1$$=\tan\left(\theta \right)^2$, where $x=\theta $

$\int\frac{\sec\left(\theta \right)^2\tan\left(\theta \right)}{\tan\left(\theta \right)^2}d\theta$
5

Simplify the fraction by $\tan\left(\theta \right)$

$\int\frac{\sec\left(\theta \right)^2}{\tan\left(\theta \right)}d\theta$

Simplify $\frac{\sec\left(\theta \right)^2}{\tan\left(\theta \right)}$ by applying trigonometric identities

$\sec\left(\theta \right)\csc\left(\theta \right)$
6

Rewrite the trigonometric expression $\frac{\sec\left(\theta \right)^2}{\tan\left(\theta \right)}$ inside the integral

$\int\sec\left(\theta \right)\csc\left(\theta \right)d\theta$

Applying the secant identity: $\displaystyle\sec\left(\theta\right)=\frac{1}{\cos\left(\theta\right)}$

$\frac{1}{\cos\left(\theta \right)}\csc\left(\theta \right)$

Multiplying the fraction by $\csc\left(\theta \right)$

$\frac{1\csc\left(\theta \right)}{\cos\left(\theta \right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{\csc\left(\theta \right)}{\cos\left(\theta \right)}$
7

Reduce $\sec\left(\theta \right)\csc\left(\theta \right)$ by applying trigonometric identities

$\int\frac{\csc\left(\theta \right)}{\cos\left(\theta \right)}d\theta$

Applying the cosecant identity: $\displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}$

$\frac{\frac{1}{\sin\left(\theta \right)}}{\cos\left(\theta \right)}$

Divide fractions $\frac{\frac{1}{\sin\left(\theta \right)}}{\cos\left(\theta \right)}$ with Keep, Change, Flip: $\frac{a}{b}\div c=\frac{a}{b}\div\frac{c}{1}=\frac{a}{b}\times\frac{1}{c}=\frac{a}{b\cdot c}$

$\frac{1}{\sin\left(\theta \right)\cos\left(\theta \right)}$

Simplify $\sin\left(\theta \right)\cos\left(\theta \right)$ using the trigonometric identity: $\sin(2x)=2\sin(x)\cos(x)$

$\frac{1}{\frac{\sin\left(2\theta \right)}{2}}$

Divide fractions $\frac{1}{\frac{\sin\left(2\theta \right)}{2}}$ with Keep, Change, Flip: $a\div \frac{b}{c}=\frac{a}{1}\div\frac{b}{c}=\frac{a}{1}\times\frac{c}{b}=\frac{a\cdot c}{b}$

$\frac{2}{\sin\left(2\theta \right)}$

Applying the cosecant identity: $\displaystyle\csc\left(\theta\right)=\frac{1}{\sin\left(\theta\right)}$

$2\csc\left(2\theta \right)$
8

Rewrite the trigonometric expression $\frac{\csc\left(\theta \right)}{\cos\left(\theta \right)}$ inside the integral

$\int2\csc\left(2\theta \right)d\theta$
9

The integral of a function times a constant ($2$) is equal to the constant times the integral of the function

$2\int\csc\left(2\theta \right)d\theta$
10

We can solve the integral $\int\csc\left(2\theta \right)d\theta$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $2\theta $ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=2\theta $

Differentiate both sides of the equation $u=2\theta $

$du=\frac{d}{d\theta}\left(2\theta \right)$

Find the derivative

$\frac{d}{d\theta}\left(2\theta \right)$

The derivative of the linear function times a constant, is equal to the constant

$2\frac{d}{d\theta}\left(\theta \right)$

The derivative of the linear function is equal to $1$

$2$
11

Now, in order to rewrite $d\theta$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=2d\theta$

Rearrange the equation

$2\cdot d\theta=du$

Divide both sides of the equation by $2$

$d\theta=\frac{du}{2}$
12

Isolate $d\theta$ in the previous equation

$d\theta=\frac{du}{2}$
13

Substituting $u$ and $d\theta$ in the integral and simplify

$2\int\frac{\csc\left(u\right)}{2}du$
14

Take the constant $\frac{1}{2}$ out of the integral

$2\cdot \left(\frac{1}{2}\right)\int\csc\left(u\right)du$
15

Multiply the fraction and term in $2\cdot \left(\frac{1}{2}\right)\int\csc\left(u\right)du$

$\int\csc\left(u\right)du$
16

The integral of $\csc(x)$ is $-\ln(\csc(x)+\cot(x))$

$-\ln\left|\csc\left(u\right)+\cot\left(u\right)\right|$

Replace $u$ with the value that we assigned to it in the beginning: $2\theta $

$-\ln\left|\csc\left(2\theta \right)+\cot\left(2\theta \right)\right|$
17

Replace $u$ with the value that we assigned to it in the beginning: $2\theta $

$-\ln\left|\csc\left(2\theta \right)+\cot\left(2\theta \right)\right|$
18

Simplify $\csc\left(2\theta \right)+\cot\left(2\theta \right)$ using trigonometric identities

$-\ln\left|\cot\left(\theta \right)\right|$

Simplify the logarithm $\ln\left(\frac{1}{\sqrt{x^2-1}}\right)$

$1\ln\left(\sqrt{x^2-1}\right)$

Using the power rule of logarithms: $\log_a(x^n)=n\cdot\log_a(x)$

$1\cdot \left(\frac{1}{2}\right)\ln\left(x^2-1\right)$
19

Express the variable $\theta$ in terms of the original variable $x$

$1\cdot \left(\frac{1}{2}\right)\ln\left|x^2-1\right|$
20

Any expression multiplied by $1$ is equal to itself

$\frac{1}{2}\ln\left|x^2-1\right|$
21

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\frac{1}{2}\ln\left|x^2-1\right|+C_0$

Final answer to the problem

$\frac{1}{2}\ln\left|x^2-1\right|+C_0$

Explore different ways to solve this problem

Solving a math problem using different methods is important because it enhances understanding, encourages critical thinking, allows for multiple solutions, and develops problem-solving strategies. Read more

Help us improve with your feedback!

Function Plot

Plotting: $\frac{1}{2}\ln\left(x^2-1\right)+C_0$

SnapXam A2
Answer Assistant

beta
Got a different answer? Verify it!

Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

How to improve your answer:

Main Topic: Evaluate Logarithms

Evaluate basic logarithmic expressions, knowing that $a^x=b$ is equal to $\log_a(b)=x$.

Your Personal Math Tutor. Powered by AI

Available 24/7, 365.

Complete step-by-step math solutions. No ads.

Choose between multiple solving methods.

Download complete solutions and keep them forever.

Unlimited practice with our AI whiteboard.

Premium access on our iOS and Android apps.

Join 500k+ students in problem solving.

Choose your plan. Cancel Anytime.
Pay $39.97 USD securely with your payment method.
Please hold while your payment is being processed.

Create an Account