👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Advanced Differentiation

Advanced differentiation Calculator

Get detailed solutions to your math problems with our Advanced differentiation step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Go!
Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of advanced differentiation. This solution was automatically generated by our smart calculator:

$\frac{d}{dx}\left(cosh\:x\right)^{arccosh\:x}$
2

To derive the function $\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$, use the method of logarithmic differentiation. First, assign the function to $y$, then take the natural logarithm of both sides of the equation

$y=\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$
3

Apply natural logarithm to both sides of the equality

$\ln\left(y\right)=\ln\left(\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}\right)$
4

Using the power rule of logarithms: $\log_a(x^n)=n\cdot\log_a(x)$

$\ln\left(y\right)=\mathrm{arccosh}\left(x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)$
5

Derive both sides of the equality with respect to $x$

$\frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)\right)$
6

Apply the product rule for differentiation: $(f\cdot g)'=f'\cdot g+f\cdot g'$, where $f=\mathrm{arccosh}\left(x\right)$ and $g=\ln\left(\mathrm{cosh}\left(x\right)\right)$

$\frac{d}{dx}\left(\ln\left(y\right)\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{d}{dx}\left(\ln\left(\mathrm{cosh}\left(x\right)\right)\right)\mathrm{arccosh}\left(x\right)$

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
7

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
8

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
9

Taking the derivative of hyperbolic cosine

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(x\right)\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)$
10

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$
11

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$
12

Apply the trigonometric identity: $\frac{\mathrm{sinh}\left(\theta \right)}{\mathrm{cosh}\left(\theta \right)}$$=\mathrm{tanh}\left(\theta \right)$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
13

Apply the formula: $\mathrm{arccosh}\left(\theta \right)$$=\ln\left(\theta +\sqrt{\theta ^2-1}\right)$

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\ln\left(x+\sqrt{x^2-1}\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{1}{y}\frac{d}{dx}\left(y\right)=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1}{\mathrm{cosh}\left(x\right)}\frac{d}{dx}\left(\mathrm{cosh}\left(x\right)\right)\mathrm{arccosh}\left(x\right)$
14

The derivative of the natural logarithm of a function is equal to the derivative of the function divided by that function. If $f(x)=ln\:a$ (where $a$ is a function of $x$), then $\displaystyle f'(x)=\frac{a'}{a}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\frac{d}{dx}\left(x+\sqrt{x^2-1}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The derivative of the linear function is equal to $1$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{d}{dx}\left(\sqrt{x^2-1}\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
15

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{d}{dx}\left(\sqrt{x^2-1}\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{\frac{1}{2}-1}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Simplify the addition $\frac{1}{2}-1$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{\frac{1-2}{2}}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Add the values $1$ and $-2$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
16

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2-1\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The derivative of the constant function ($-1$) is equal to zero

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
17

The derivative of a sum of two or more functions is the sum of the derivatives of each function

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}\frac{d}{dx}\left(x^2\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x^{\left(2-1\right)}$

Subtract the values $2$ and $-1$

$2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x$
18

The power rule for differentiation states that if $n$ is a real number and $f(x) = x^n$, then $f'(x) = nx^{n-1}$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction and term in $2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{2\cdot 1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply $2$ times $1$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\frac{2}{2}\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Divide $2$ by $2$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+1\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
19

Multiply the fraction and term in $2\frac{1}{2}\left(x^2-1\right)^{-\frac{1}{2}}x$

$\frac{y^{\prime}}{y}=\frac{1}{x+\sqrt{x^2-1}}\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{1\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
20

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{1}{\left(x^2-1\right)^{\left|-\frac{1}{2}\right|}}x$

Multiplying the fraction by $x$

$\frac{x}{\left(x^2-1\right)^{\left|-\frac{1}{2}\right|}}$
21

Applying the property of exponents, $\displaystyle a^{-n}=\frac{1}{a^n}$, where $n$ is a number

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{1}{\sqrt{x^2-1}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{1x}{\sqrt{x^2-1}}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{1\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{1\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{d}{dx}\left(\mathrm{arccosh}\left(x\right)\right)\ln\left(\mathrm{cosh}\left(x\right)\right)+\frac{\mathrm{arccosh}\left(x\right)\mathrm{sinh}\left(x\right)}{\mathrm{cosh}\left(x\right)}$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{\left(1+\left(x^2-1\right)^{-\frac{1}{2}}x\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$

Any expression multiplied by $1$ is equal to itself

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{x}{\sqrt{x^2-1}}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
22

Multiply the fraction by the term

$\frac{y^{\prime}}{y}=\frac{\left(1+\frac{x}{\sqrt{x^2-1}}\right)\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
23

Combine all terms into a single fraction with $\sqrt{x^2-1}$ as common denominator

$\frac{y^{\prime}}{y}=\frac{\frac{\sqrt{x^2-1}+x}{\sqrt{x^2-1}}\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
24

Simplify the fraction $\frac{\frac{\sqrt{x^2-1}+x}{\sqrt{x^2-1}}\ln\left(\mathrm{cosh}\left(x\right)\right)}{x+\sqrt{x^2-1}}$ by $x+\sqrt{x^2-1}$

$\frac{y^{\prime}}{y}=\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)$
25

Multiply both sides of the equation by $y$

$y^{\prime}=\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)y$
26

Substitute $y$ for the original function: $\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$

$y^{\prime}=\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$
27

The derivative of the function results in

$\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$

Final answer to the problem

$\left(\frac{\ln\left(\mathrm{cosh}\left(x\right)\right)}{\sqrt{x^2-1}}+\mathrm{arccosh}\left(x\right)\mathrm{tanh}\left(x\right)\right)\mathrm{cosh}\left(x\right)^{\mathrm{arccosh}\left(x\right)}$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!