👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Matrices

Matrices Calculator

Get detailed solutions to your math problems with our Matrices step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of matrices. This solution was automatically generated by our smart calculator:

$\int\frac{1}{x\left(x^2+x+1\right)}dx$

Rewrite the fraction $\frac{1}{x\left(x^2+x+1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{x\left(x^2+x+1\right)}=\frac{A}{x}+\frac{Bx+C}{x^2+x+1}$

Find the values for the unknown coefficients: $A, B, C$. The first step is to multiply both sides of the equation from the previous step by $x\left(x^2+x+1\right)$

$1=x\left(x^2+x+1\right)\left(\frac{A}{x}+\frac{Bx+C}{x^2+x+1}\right)$

Multiplying polynomials

$1=\frac{x\left(x^2+x+1\right)A}{x}+\frac{x\left(x^2+x+1\right)\left(Bx+C\right)}{x^2+x+1}$

Simplifying

$1=\left(x^2+x+1\right)A+x\left(Bx+C\right)$

Assigning values to $x$ we obtain the following system of equations

$\begin{matrix}1=A&\:\:\:\:\:\:\:(x=0) \\ 1=A+B-C&\:\:\:\:\:\:\:(x=-1) \\ 1=3A+B+C&\:\:\:\:\:\:\:(x=1)\end{matrix}$

Proceed to solve the system of linear equations

$\begin{matrix}1A & + & 0B & + & 0C & =1 \\ 1A & + & 1B & - & 1C & =1 \\ 3A & + & 1B & + & 1C & =1\end{matrix}$

Rewrite as a coefficient matrix

$\left(\begin{matrix}1 & 0 & 0 & 1 \\ 1 & 1 & -1 & 1 \\ 3 & 1 & 1 & 1\end{matrix}\right)$

Reducing the original matrix to a identity matrix using Gaussian Elimination

$\left(\begin{matrix}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1\end{matrix}\right)$

The integral of $\frac{1}{x\left(x^2+x+1\right)}$ in decomposed fractions equals

$\frac{1}{x}+\frac{-x-1}{x^2+x+1}$
2

Rewrite the fraction $\frac{1}{x\left(x^2+x+1\right)}$ in $2$ simpler fractions using partial fraction decomposition

$\frac{1}{x}+\frac{-x-1}{x^2+x+1}$
3

Expand the integral $\int\left(\frac{1}{x}+\frac{-x-1}{x^2+x+1}\right)dx$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$\int\frac{1}{x}dx+\int\frac{-x-1}{x^2+x+1}dx$

The integral of the inverse of the lineal function is given by the following formula, $\displaystyle\int\frac{1}{x}dx=\ln(x)$

$\ln\left|x\right|$
4

The integral $\int\frac{1}{x}dx$ results in: $\ln\left(x\right)$

$\ln\left(x\right)$

Take out the negative sign of all the terms of the numerator of the integral

$-\int\frac{x+1}{x^2+x+1}dx$
5

The integral $\int\frac{-x-1}{x^2+x+1}dx$ results in: $-\int\frac{x+1}{x^2+x+1}dx$

$-\int\frac{x+1}{x^2+x+1}dx$
6

Gather the results of all integrals

$\ln\left|x\right|-\int\frac{x+1}{x^2+x+1}dx$

Add and subtract $\displaystyle\left(\frac{b}{2a}\right)^2$

$\frac{x+1}{x^2+x+1+\frac{1}{4}-\frac{1}{4}}$

Factor the perfect square trinomial $x^2+x+\frac{1}{4}$

$\frac{x+1}{\left(x+\sqrt{\frac{1}{4}}\right)^2+1-\frac{1}{4}}$

Calculate the power $\sqrt{\frac{1}{4}}$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+1-\frac{1}{4}}$

Simplify the addition $\left(x+\frac{1}{2}\right)^2+1-\frac{1}{4}$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{-1+1\cdot 4}{4}}$

Multiply $1$ times $4$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{-1+4}{4}}$

Subtract the values $4$ and $-1$

$\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}$
7

Rewrite the expression $\frac{x+1}{x^2+x+1}$ inside the integral in factored form

$\ln\left(x\right)-\int\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx$

We can solve the integral $\int\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx$ by applying integration by substitution method (also called U-Substitution). First, we must identify a section within the integral with a new variable (let's call it $u$), which when substituted makes the integral easier. We see that $x+\frac{1}{2}$ it's a good candidate for substitution. Let's define a variable $u$ and assign it to the choosen part

$u=x+\frac{1}{2}$

Now, in order to rewrite $dx$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=dx$

Rewriting $x$ in terms of $u$

$x=u-\frac{1}{2}$

Substituting $u$, $dx$ and $x$ in the integral and simplify

$-\int\frac{u+\frac{1}{2}}{u^2+\frac{3}{4}}du$

Expand the fraction $\frac{u+\frac{1}{2}}{u^2+\frac{3}{4}}$ into $2$ simpler fractions with common denominator $u^2+\frac{3}{4}$

$-\int\left(\frac{u}{u^2+\frac{3}{4}}+\frac{\frac{1}{2}}{u^2+\frac{3}{4}}\right)du$

Expand the integral $\int\left(\frac{u}{u^2+\frac{3}{4}}+\frac{\frac{1}{2}}{u^2+\frac{3}{4}}\right)du$ into $2$ integrals using the sum rule for integrals, to then solve each integral separately

$-\int\frac{u}{u^2+\frac{3}{4}}du-\int\frac{\frac{1}{2}}{u^2+\frac{3}{4}}du$

The integral of a function times a constant ($\frac{1}{2}$) is equal to the constant times the integral of the function

$-\int\frac{u}{u^2+\frac{3}{4}}du- \left(\frac{1}{2}\right)\int\frac{1}{u^2+\frac{3}{4}}du$

Multiply the fraction and term in $- \left(\frac{1}{2}\right)\int\frac{1}{u^2+\frac{3}{4}}du$

$-\int\frac{u}{u^2+\frac{3}{4}}du-\frac{1}{2}\int\frac{1}{u^2+\frac{3}{4}}du$

Factor the integral's denominator by $\frac{3}{4}$

$-\int\frac{u}{u^2+\frac{3}{4}}du-\frac{1}{2}\cdot \frac{1}{\frac{3}{4}}\int\frac{1}{1+\frac{u^2}{\frac{3}{4}}}du$

Simplify the expression

$-\int\frac{u}{u^2+\frac{3}{4}}du-\frac{2}{3}\int\frac{1}{1+\frac{4u^2}{3}}du$

We can solve the integral $-\int\frac{u}{u^2+\frac{3}{4}}du$ by applying integration method of trigonometric substitution using the substitution

$u=\frac{\sqrt{3}}{2}\tan\left(\theta \right)$

Now, in order to rewrite $d\theta$ in terms of $du$, we need to find the derivative of $u$. We need to calculate $du$, we can do that by deriving the equation above

$du=\frac{\sqrt{3}\sec\left(\theta \right)^2}{2}d\theta$

Substituting in the original integral, we get

$-\int\frac{\frac{\sqrt{3}\tan\left(\theta \right)}{2}}{\frac{3}{4}\sec\left(\theta \right)^2}\frac{\sqrt{3}\sec\left(\theta \right)^2}{2}d\theta-\frac{2}{3}\int\frac{1}{1+\frac{4u^2}{3}}du$

Simplifying

$-\int\tan\left(\theta \right)d\theta-\frac{2}{3}\int\frac{1}{1+\frac{4u^2}{3}}du$

Simplify the expression

$-\int\tan\left(\theta \right)d\theta-\frac{2}{3}\int\frac{3}{4u^2+3}du$

The integral of a function times a constant ($3$) is equal to the constant times the integral of the function

$-\int\tan\left(\theta \right)d\theta+3\left(-\frac{2}{3}\right)\int\frac{1}{3+4u^2}du$

Multiply the fraction and term in $3\left(-\frac{2}{3}\right)\int\frac{1}{3+4u^2}du$

$-\int\tan\left(\theta \right)d\theta-2\int\frac{1}{3+4u^2}du$

The integral of the tangent function is given by the following formula, $\displaystyle\int\tan(x)dx=-\ln(\cos(x))$

$1\ln\left|\cos\left(\theta \right)\right|-2\int\frac{1}{3+4u^2}du$

Any expression multiplied by $1$ is equal to itself

$\ln\left|\cos\left(\theta \right)\right|-2\int\frac{1}{3+4u^2}du$

Express the variable $\theta$ in terms of the original variable $x$

$\ln\left|\frac{\frac{\sqrt{3}}{2}}{\sqrt{u^2+\frac{3}{4}}}\right|-2\int\frac{1}{3+4u^2}du$

Divide fractions $\frac{\frac{\sqrt{3}}{2}}{\sqrt{u^2+\frac{3}{4}}}$ with Keep, Change, Flip: $\frac{a}{b}\div c=\frac{a}{b}\div\frac{c}{1}=\frac{a}{b}\times\frac{1}{c}=\frac{a}{b\cdot c}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{u^2+\frac{3}{4}}}\right|-2\int\frac{1}{3+4u^2}du$

Replace $u$ with the value that we assigned to it in the beginning: $x+\frac{1}{2}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|-2\int\frac{1}{3+4u^2}du$

Solve the integral applying the substitution $v^2=\frac{4u^2}{3}$. Then, take the square root of both sides, simplifying we have

$v=\frac{2u}{\sqrt{3}}$

Now, in order to rewrite $du$ in terms of $dv$, we need to find the derivative of $v$. We need to calculate $dv$, we can do that by deriving the equation above

$dv=\frac{2}{\sqrt{3}}du$

Isolate $du$ in the previous equation

$\frac{dv}{\frac{2}{\sqrt{3}}}=du$

After replacing everything and simplifying, the integral results in

$\ln\left(\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right)+\frac{-\sqrt{3}}{3}\int\frac{1}{1+v^2}dv$

Solve the integral by applying the formula $\displaystyle\int\frac{x'}{x^2+a^2}dx=\frac{1}{a}\arctan\left(\frac{x}{a}\right)$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}}{3}\arctan\left(v\right)$

Multiplying the fraction by $\arctan\left(v\right)$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(v\right)}{3}$

Replace $v$ with the value that we assigned to it in the beginning: $\frac{2u}{\sqrt{3}}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(\frac{2u}{\sqrt{3}}\right)}{3}$

Replace $u$ with the value that we assigned to it in the beginning: $x+\frac{1}{2}$

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(\frac{2\left(x+\frac{1}{2}\right)}{\sqrt{3}}\right)}{3}$

Simplify the product by distributing $2$ to both terms

$\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}$
8

The integral $-\int\frac{x+1}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}dx$ results in: $\ln\left(\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right)+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}$

$\ln\left(\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right)+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}$
9

Gather the results of all integrals

$\ln\left|x\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}+\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|$
10

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$\ln\left|x\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}+\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+C_0$

Final answer to the exercise

$\ln\left|x\right|+\frac{-\sqrt{3}\arctan\left(\frac{1+2x}{\sqrt{3}}\right)}{3}+\ln\left|\frac{\sqrt{3}}{2\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}}\right|+C_0$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!