Final answer to the problem
Step-by-step Solution
How should I solve this problem?
- Choose an option
- Exact Differential Equation
- Linear Differential Equation
- Separable Differential Equation
- Homogeneous Differential Equation
- Integrate by partial fractions
- Product of Binomials with Common Term
- FOIL Method
- Integrate by substitution
- Integrate by parts
- Load more...
We can identify that the differential equation $y^2dx=\left(x^2+xy\right)dy$ is homogeneous, since it is written in the standard form $M(x,y)dx+N(x,y)dy=0$, where $M(x,y)$ and $N(x,y)$ are the partial derivatives of a two-variable function $f(x,y)$ and both are homogeneous functions of the same degree
Learn how to solve integrals of polynomial functions problems step by step online.
$y^2dx=\left(x^2+xy\right)dy$
Learn how to solve integrals of polynomial functions problems step by step online. Solve the differential equation y^2dx=(x^2+xy)dy. We can identify that the differential equation y^2dx=\left(x^2+xy\right)dy is homogeneous, since it is written in the standard form M(x,y)dx+N(x,y)dy=0, where M(x,y) and N(x,y) are the partial derivatives of a two-variable function f(x,y) and both are homogeneous functions of the same degree. Use the substitution: x=uy. Expand and simplify. Group the terms of the differential equation. Move the terms of the u variable to the left side, and the terms of the y variable to the right side of the equality.