👉 Try now NerdPal! Our new math app on iOS and Android
  1. calculators
  2. Separable Differential Equations

Separable Differential Equations Calculator

Get detailed solutions to your math problems with our Separable Differential Equations step-by-step calculator. Practice your math skills and learn step by step with our math solver. Check out all of our online calculators here.

Symbolic mode
Text mode
Go!
1
2
3
4
5
6
7
8
9
0
a
b
c
d
f
g
m
n
u
v
w
x
y
z
.
(◻)
+
-
×
◻/◻
/
÷
2

e
π
ln
log
log
lim
d/dx
Dx
|◻|
θ
=
>
<
>=
<=
sin
cos
tan
cot
sec
csc

asin
acos
atan
acot
asec
acsc

sinh
cosh
tanh
coth
sech
csch

asinh
acosh
atanh
acoth
asech
acsch

1

Here, we show you a step-by-step solved example of separable differential equations. This solution was automatically generated by our smart calculator:

$\frac{dy}{dx}=\frac{2x}{3y^2}$
2

Group the terms of the differential equation. Move the terms of the $y$ variable to the left side, and the terms of the $x$ variable to the right side of the equality

$3y^2dy=2xdx$
3

Integrate both sides of the differential equation, the left side with respect to $y$, and the right side with respect to $x$

$\int3y^2dy=\int2xdx$

The integral of a function times a constant ($3$) is equal to the constant times the integral of the function

$3\int y^2dy$

Apply the power rule for integration, $\displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}$, where $n$ represents a number or constant function, such as $2$

$3\left(\frac{y^{3}}{3}\right)$

Simplify the fraction $3\left(\frac{y^{3}}{3}\right)$

$y^{3}$
4

Solve the integral $\int3y^2dy$ and replace the result in the differential equation

$y^{3}=\int2xdx$

The integral of a function times a constant ($2$) is equal to the constant times the integral of the function

$2\int xdx$

Applying the power rule for integration, $\displaystyle\int x^n dx=\frac{x^{n+1}}{n+1}$, where $n$ represents a number or constant function, in this case $n=1$

$2\cdot \left(\frac{1}{2}\right)x^2$

Multiply the fraction and term in $2\cdot \left(\frac{1}{2}\right)x^2$

$x^2$

As the integral that we are solving is an indefinite integral, when we finish integrating we must add the constant of integration $C$

$x^2+C_0$
5

Solve the integral $\int2xdx$ and replace the result in the differential equation

$y^{3}=x^2+C_0$

Removing the variable's exponent raising both sides of the equation to the power of $\frac{1}{3}$

$\sqrt[3]{y^{3}}=\sqrt[3]{x^2+C_0}$

Cancel exponents $3$ and $1$

$y=\sqrt[3]{x^2+C_0}$
6

Find the explicit solution to the differential equation. We need to isolate the variable $y$

$y=\sqrt[3]{x^2+C_0}$

Final answer to the exercise

$y=\sqrt[3]{x^2+C_0}$

Are you struggling with math?

Access detailed step by step solutions to thousands of problems, growing every day!